En plus de réguler l’horloge circadienne, le complexe du soir agit également comme un capteur de température, en réglant la fonction de l’horloge et le développement de la plante par rapport à des conditions plus ou moins chaudes.
Le complexe du soir peut détecter de petits changements de température de quelques degrés et modifier la croissance des plantes en conséquence. Le complexe du soir est capable de lier l’ADN à des températures plus basses, autour de 15℃ à 20℃, mais lorsque la température augmente, il n’est plus capable de s’assembler sur l’ADN en tant que complexe actif. Par conséquent, les gènes importants pour la croissance et le développement restent « allumés » même pendant la nuit lorsqu’il fait chaud, ce qui accélère la croissance et provoque une floraison précoce.
Comment ça marche ?
Le complexe du soir inhibe en particulier l’action d’une protéine clé dans la croissance et la floraison. À des températures trop élevées, le complexe du soir n’est pas capable d’inhiber cette protéine. Celle-ci peut donc donner le principal signal qui indique aux plantes de fleurir, en activant l’expression du gène de la floraison, le florigen.
Afin de comprendre comment le complexe du soir remplit ses fonctions dans la régulation circadienne et la détection de la température, nous avons étudié comment il se forme, comment il reconnaît l’ADN au niveau moléculaire, et comment il agit dessus.
Nous avons découvert le ballet subtil entre les trois protéines du complexes du soir : une seule des trois protéines, la « LUX », se lie directement à l’ADN grâce à une séquence particulière d’acides aminés, qui se replie en une structure tridimensionnelle capable de reconnaître une séquence spécifique d’ADN dans le génome de la plante. Cette protéine réunit les deux autres à proximité de l’ADN.
En utilisant des rayons X au synchrotron de Grenoble, nous avons déterminé la structure tridimensionnelle de la LUX lorsqu’elle est liée à l’ADN. C’est grâce à sa structure tridimensionnelle spécifique que la LUX est capable de trouver et de reconnaître une courte séquence d’ADN bien particulière, constituée de 6 paires de bases, dans un génome contenant 135 000 000 paires de bases.
Comme les pièces d’un puzzle, la LUX et les deux autres protéines s’assemblent autour de cette séquence spécifique et empêchent l’expression des gènes voisins. En fait, les deux protéines recrutées ont des fonctions différentes : l’une diminue la capacité de la LUX à se lier à l’ADN, tandis que l’autre rétablit l’interaction avec l’ADN, le tout en fonction de la température.
Tropaeolum majus.
Nous avons modifié la séquence d’acides aminés de la LUX afin de diminuer la liaison du complexe du soir à l’ADN. Cette mutation a permis aux plantes de pousser plus vite et de fleurir plus tôt, même à des températures plus basses. Ceci indique fortement que le complexe du soir peut être rendu plus ou moins actif en modifiant la force de liaison entre la LUX et l’ADN. Le défi consiste maintenant à concevoir une mutation qui augmentera la stabilité de liaison entre la protéine LUX et l’ADN même à des températures élevées, ce qui donnerait un complexe du soir plus actif et des plantes moins sensibles aux températures plus chaudes.
Pourquoi est-il si important de comprendre les mécanismes moléculaires de la détection de la température ?
De nombreuses plantes cultivées présentent une « thermomorphogenèse », ce qui signifie que la température modifie l’architecture, le développement et la croissance des plantes. La floraison précoce est l’une des conséquences les plus frappantes des températures de croissance plus élevées et peut entraîner à terme une diminution de la biomasse, du nombre de graines ou des fruits plus petits.
Lavandula angustifolia.
Les plantes ont évolué avec leur environnement au cours des millénaires, optimisant leurs chances de survie grâce à la production réussie de graines viables. En raison du changement climatique, l’équilibre délicat entre une lumière suffisante et une température assez élevée pour une croissance optimale est modifié plus rapidement que les plantes ne peuvent s’adapter, ce qui signifie que nous sommes confrontés à une sécurité alimentaire incertaine.
Comprendre comment les signaux de température sont perçus par l’horloge circadienne des plantes ouvre la possibilité de modifier leur réponse aux changements environnementaux. Si nous pouvons faire en sorte que le complexe du soir lie mieux l’ADN, on pourrait ralentir l’horloge interne des plantes, afin d’ajuster la croissance l’entrée dans la reproduction à des conditions plus chaudes.